Hierarchical Reinforcement Learning


Hierarchical reinforcement learning is a framework that decomposes complex tasks into a hierarchy of subtasks for more efficient learning.

ZeroDVFS: Zero-Shot LLM-Guided Core and Frequency Allocation for Embedded Platforms

Add code
Jan 13, 2026
Viaarxiv icon

STO-RL: Offline RL under Sparse Rewards via LLM-Guided Subgoal Temporal Order

Add code
Jan 13, 2026
Viaarxiv icon

Enhancing Cloud Network Resilience via a Robust LLM-Empowered Multi-Agent Reinforcement Learning Framework

Add code
Jan 12, 2026
Viaarxiv icon

StackPlanner: A Centralized Hierarchical Multi-Agent System with Task-Experience Memory Management

Add code
Jan 09, 2026
Viaarxiv icon

Hierarchical GNN-Based Multi-Agent Learning for Dynamic Queue-Jump Lane and Emergency Vehicle Corridor Formation

Add code
Jan 07, 2026
Viaarxiv icon

Foundation Model-Aided Hierarchical Control for Robust RIS-Assisted Near-Field Communications

Add code
Jan 06, 2026
Viaarxiv icon

Locomotion Beyond Feet

Add code
Jan 07, 2026
Viaarxiv icon

Reasoning Over Space: Enabling Geographic Reasoning for LLM-Based Generative Next POI Recommendation

Add code
Jan 08, 2026
Viaarxiv icon

A Future Capabilities Agent for Tactical Air Traffic Control

Add code
Jan 07, 2026
Viaarxiv icon

Vision-Language Reasoning for Geolocalization: A Reinforcement Learning Approach

Add code
Jan 05, 2026
Viaarxiv icon