Hierarchical reinforcement learning is a framework that decomposes complex tasks into a hierarchy of subtasks for more efficient learning.
Dynamic voltage and frequency scaling (DVFS) and task-to-core allocation are critical for thermal management and balancing energy and performance in embedded systems. Existing approaches either rely on utilization-based heuristics that overlook stall times, or require extensive offline profiling for table generation, preventing runtime adaptation. We propose a model-based hierarchical multi-agent reinforcement learning (MARL) framework for thermal- and energy-aware scheduling on multi-core platforms. Two collaborative agents decompose the exponential action space, achieving 358ms latency for subsequent decisions. First decisions require 3.5 to 8.0s including one-time LLM feature extraction. An accurate environment model leverages regression techniques to predict thermal dynamics and performance states. When combined with LLM-extracted semantic features, the environment model enables zero-shot deployment for new workloads on trained platforms by generating synthetic training data without requiring workload-specific profiling samples. We introduce LLM-based semantic feature extraction that characterizes OpenMP programs through 13 code-level features without execution. The Dyna-Q-inspired framework integrates direct reinforcement learning with model-based planning, achieving 20x faster convergence than model-free methods. Experiments on BOTS and PolybenchC benchmarks across NVIDIA Jetson TX2, Jetson Orin NX, RubikPi, and Intel Core i7 demonstrate 7.09x better energy efficiency and 4.0x better makespan than Linux ondemand governor. First-decision latency is 8,300x faster than table-based profiling, enabling practical deployment in dynamic embedded systems.
Offline reinforcement learning (RL) enables policy learning from pre-collected datasets, avoiding costly and risky online interactions, but it often struggles with long-horizon tasks involving sparse rewards. Existing goal-conditioned and hierarchical offline RL methods decompose such tasks and generate intermediate rewards to mitigate limitations of traditional offline RL, but usually overlook temporal dependencies among subgoals and rely on imprecise reward shaping, leading to suboptimal policies. To address these issues, we propose STO-RL (Offline RL using LLM-Guided Subgoal Temporal Order), an offline RL framework that leverages large language models (LLMs) to generate temporally ordered subgoal sequences and corresponding state-to-subgoal-stage mappings. Using this temporal structure, STO-RL applies potential-based reward shaping to transform sparse terminal rewards into dense, temporally consistent signals, promoting subgoal progress while avoiding suboptimal solutions. The resulting augmented dataset with shaped rewards enables efficient offline training of high-performing policies. Evaluations on four discrete and continuous sparse-reward benchmarks demonstrate that STO-RL consistently outperforms state-of-the-art offline goal-conditioned and hierarchical RL baselines, achieving faster convergence, higher success rates, and shorter trajectories. Ablation studies further confirm STO-RL's robustness to imperfect or noisy LLM-generated subgoal sequences, demonstrating that LLM-guided subgoal temporal structures combined with theoretically grounded reward shaping provide a practical and scalable solution for long-horizon offline RL.
While virtualization and resource pooling empower cloud networks with structural flexibility and elastic scalability, they inevitably expand the attack surface and challenge cyber resilience. Reinforcement Learning (RL)-based defense strategies have been developed to optimize resource deployment and isolation policies under adversarial conditions, aiming to enhance system resilience by maintaining and restoring network availability. However, existing approaches lack robustness as they require retraining to adapt to dynamic changes in network structure, node scale, attack strategies, and attack intensity. Furthermore, the lack of Human-in-the-Loop (HITL) support limits interpretability and flexibility. To address these limitations, we propose CyberOps-Bots, a hierarchical multi-agent reinforcement learning framework empowered by Large Language Models (LLMs). Inspired by MITRE ATT&CK's Tactics-Techniques model, CyberOps-Bots features a two-layer architecture: (1) An upper-level LLM agent with four modules--ReAct planning, IPDRR-based perception, long-short term memory, and action/tool integration--performs global awareness, human intent recognition, and tactical planning; (2) Lower-level RL agents, developed via heterogeneous separated pre-training, execute atomic defense actions within localized network regions. This synergy preserves LLM adaptability and interpretability while ensuring reliable RL execution. Experiments on real cloud datasets show that, compared to state-of-the-art algorithms, CyberOps-Bots maintains network availability 68.5% higher and achieves a 34.7% jumpstart performance gain when shifting the scenarios without retraining. To our knowledge, this is the first study to establish a robust LLM-RL framework with HITL support for cloud defense. We will release our framework to the community, facilitating the advancement of robust and autonomous defense in cloud networks.
Multi-agent systems based on large language models, particularly centralized architectures, have recently shown strong potential for complex and knowledge-intensive tasks. However, central agents often suffer from unstable long-horizon collaboration due to the lack of memory management, leading to context bloat, error accumulation, and poor cross-task generalization. To address both task-level memory inefficiency and the inability to reuse coordination experience, we propose StackPlanner, a hierarchical multi-agent framework with explicit memory control. StackPlanner addresses these challenges by decoupling high-level coordination from subtask execution with active task-level memory control, and by learning to retrieve and exploit reusable coordination experience via structured experience memory and reinforcement learning. Experiments on multiple deep-search and agent system benchmarks demonstrate the effectiveness of our approach in enabling reliable long-horizon multi-agent collaboration.
Emergency vehicles require rapid passage through congested traffic, yet existing strategies fail to adapt to dynamic conditions. We propose a novel hierarchical graph neural network (GNN)-based multi-agent reinforcement learning framework to coordinate connected vehicles for emergency corridor formation. Our approach uses a high-level planner for global strategy and low-level controllers for trajectory execution, utilizing graph attention networks to scale with variable agent counts. Trained via Multi-Agent Proximal Policy Optimization (MAPPO), the system reduces emergency vehicle travel time by 28.3% compared to baselines and 44.6% compared to uncoordinated traffic in simulations. The design achieves near-zero collision rates (0.3%) while maintaining 81% of background traffic efficiency. Ablation and generalization studies confirm the framework's robustness across diverse scenarios. These results demonstrate the effectiveness of combining GNNs with hierarchical learning for intelligent transportation systems.
The deployment of extremely large aperture arrays (ELAAs) in sixth-generation (6G) networks could shift communication into the near-field communication (NFC) regime. In this regime, signals exhibit spherical wave propagation, unlike the planar waves in conventional far-field systems. Reconfigurable intelligent surfaces (RISs) can dynamically adjust phase shifts to support NFC beamfocusing, concentrating signal energy at specific spatial coordinates. However, effective RIS utilization depends on both rapid channel state information (CSI) estimation and proactive blockage mitigation, which occur on inherently different timescales. CSI varies at millisecond intervals due to small-scale fading, while blockage events evolve over seconds, posing challenges for conventional single-level control algorithms. To address this issue, we propose a dual-transformer (DT) hierarchical framework that integrates two specialized transformer models within a hierarchical deep reinforcement learning (HDRL) architecture, referred to as the DT-HDRL framework. A fast-timescale transformer processes ray-tracing data for rapid CSI estimation, while a vision transformer (ViT) analyzes visual data to predict impending blockages. In HDRL, the high-level controller selects line-of-sight (LoS) or RIS-assisted non-line-of-sight (NLoS) transmission paths and sets goals, while the low-level controller optimizes base station (BS) beamfocusing and RIS phase shifts using instantaneous CSI. This dual-timescale coordination maximizes spectral efficiency (SE) while ensuring robust performance under dynamic conditions. Simulation results demonstrate that our approach improves SE by approximately 18% compared to single-timescale baselines, while the proposed blockage predictor achieves an F1-score of 0.92, providing a 769 ms advance warning window in dynamic scenarios.
Most locomotion methods for humanoid robots focus on leg-based gaits, yet natural bipeds frequently rely on hands, knees, and elbows to establish additional contacts for stability and support in complex environments. This paper introduces Locomotion Beyond Feet, a comprehensive system for whole-body humanoid locomotion across extremely challenging terrains, including low-clearance spaces under chairs, knee-high walls, knee-high platforms, and steep ascending and descending stairs. Our approach addresses two key challenges: contact-rich motion planning and generalization across diverse terrains. To this end, we combine physics-grounded keyframe animation with reinforcement learning. Keyframes encode human knowledge of motor skills, are embodiment-specific, and can be readily validated in simulation or on hardware, while reinforcement learning transforms these references into robust, physically accurate motions. We further employ a hierarchical framework consisting of terrain-specific motion-tracking policies, failure recovery mechanisms, and a vision-based skill planner. Real-world experiments demonstrate that Locomotion Beyond Feet achieves robust whole-body locomotion and generalizes across obstacle sizes, obstacle instances, and terrain sequences.
Generative recommendation with large language models (LLMs) reframes prediction as sequence generation, yet existing LLM-based recommenders remain limited in leveraging geographic signals that are crucial in mobility and local-services scenarios. Here, we present Reasoning Over Space (ROS), a framework that utilizes geography as a vital decision variable within the reasoning process. ROS introduces a Hierarchical Spatial Semantic ID (SID) that discretizes coarse-to-fine locality and POI semantics into compositional tokens, and endows LLM with a three-stage Mobility Chain-of-Thought (CoT) paradigm that models user personality, constructs an intent-aligned candidate space, and performs locality informed pruning. We further align the model with real world geography via spatial-guided Reinforcement Learning (RL). Experiments on three widely used location-based social network (LBSN) datasets show that ROS achieves over 10% relative gains in hit rate over strongest LLM-based baselines and improves cross-city transfer, despite using a smaller backbone model.
Escalating air traffic demand is driving the adoption of automation to support air traffic controllers, but existing approaches face a trade-off between safety assurance and interpretability. Optimisation-based methods such as reinforcement learning offer strong performance but are difficult to verify and explain, while rules-based systems are transparent yet rarely check safety under uncertainty. This paper outlines Agent Mallard, a forward-planning, rules-based agent for tactical control in systemised airspace that embeds a stochastic digital twin directly into its conflict-resolution loop. Mallard operates on predefined GPS-guided routes, reducing continuous 4D vectoring to discrete choices over lanes and levels, and constructs hierarchical plans from an expert-informed library of deconfliction strategies. A depth-limited backtracking search uses causal attribution, topological plan splicing, and monotonic axis constraints to seek a complete safe plan for all aircraft, validating each candidate manoeuvre against uncertain execution scenarios (e.g., wind variation, pilot response, communication loss) before commitment. Preliminary walkthroughs with UK controllers and initial tests in the BluebirdDT airspace digital twin indicate that Mallard's behaviour aligns with expert reasoning and resolves conflicts in simplified scenarios. The architecture is intended to combine model-based safety assessment, interpretable decision logic, and tractable computational performance in future structured en-route environments.
Recent advances in vision-language models have opened up new possibilities for reasoning-driven image geolocalization. However, existing approaches often rely on synthetic reasoning annotations or external image retrieval, which can limit interpretability and generalizability. In this paper, we present Geo-R, a retrieval-free framework that uncovers structured reasoning paths from existing ground-truth coordinates and optimizes geolocation accuracy via reinforcement learning. We propose the Chain of Region, a rule-based hierarchical reasoning paradigm that generates precise, interpretable supervision by mapping GPS coordinates to geographic entities (e.g., country, province, city) without relying on model-generated or synthetic labels. Building on this, we introduce a lightweight reinforcement learning strategy with coordinate-aligned rewards based on Haversine distance, enabling the model to refine predictions through spatially meaningful feedback. Our approach bridges structured geographic reasoning with direct spatial supervision, yielding improved localization accuracy, stronger generalization, and more transparent inference. Experimental results across multiple benchmarks confirm the effectiveness of Geo-R, establishing a new retrieval-free paradigm for scalable and interpretable image geolocalization. To facilitate further research and ensure reproducibility, both the model and code will be made publicly available.